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Abstract. Lie groups involving potential symmetries are applied in connection with the system of magne-
tohydrodynamic equations for incompressible matter with Ohm’s law for finite resistivity and Hall current
in cylindrical geometry. Some simplifications allow to obtain a Fokker-Planck type equation. Invariant solu-
tions are obtained involving the effects of time-dependent flow and the Hall-current. Some interesting side
results of this approach are new exact solutions that do not seem to have been reported in the literature.

PACS. 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.) – 52.30.Cv
Magnetohydrodynamics (including electron magnetohydrodynamics) – 02.30.Jr Partial differential
equations – 52.65.Ff Fokker-Planck and Vlasov equation

1 Introduction

Recently, Khater et al. [1–3] have analyzed the general-
ized one-dimensional Fokker-Planck equation (FPE) and
the inhomogeneous NL diffusion equation through the ap-
plication of the potential symmetries.

For the general and normalized expressions of the
equations of magnetohydrodynamics (MHD) we refer to
reference [3] as well. However, we add here some general
considerations on the utility of obtaining solutions of the
MHD equations, especially with the solution method con-
sidered here. MHD deals with the study of electromag-
netic effects on conducting fluids and was mainly created
by Alfven around 1940 (Nobelprize in physics 1970). Due
to some (small) simplifications one may reduce the elec-
tromagnetic set of equations just to one equation of evo-
lution involving the magnetic field only (however, linked
to the fluid equations through the fluid velocity). Ideal
MHD neglects dissipative effects, but may be extended
to include resistivity, viscosity, the Hall current, etc., en-
larging the domain of applications tremendously, but in-
creasing the difficulty to obtain solutions and the stability
analyses of those solutions very much too. MHD is essen-
tial in plasma physics and astrophysics (e.g. generation
of magnetic fields in planets, Sun and stars by dynamo
action, i.e. kinetic energy converted to magnetic energy).
MHD determines the shape and fate of conducting fluid
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configurations pervaded by magnetic fields. The impor-
tance of obtaining exact solutions is evident. The strategy
is usually to determine first equilibria or steady states or
even time dependent states. Next one may investigate the
stability of these configurations. The use of potential sym-
metries and invariant solutions is particularly interesting
as this opens the way to several solutions or even classes
of solutions, which, moreover, may allow comparisons in
e.g. stability analyses. A previous paper, Khater et al. [3],
was dealing with Cartesian geometry. However, in the lab-
oratory (e.g. fusion research) and in nature (e.g. magnetic
flux tubes like filaments and protuberances on the Sun)
the configurations have often approximately a cylindrical
shape. Here we investigate three dimensional cylindrical
cases, again leading to a FPE, however, more involved,
but more useful. For a brief exposition of the potential
symmetries and of the equations of magnetohydrodynam-
ics MHD: see [3].

Some interesting side results of the present study are
new exact solutions that do not seem to have been re-
ported in the literature.

This paper is organized as follows: Section 2 is devoted
to the basic MHD equation. Section 3 deals with the de-
termination of the potential symmetries. In Section 4, we
analyze the invariant solutions of the MHD equations for
various cases corresponding to physically interesting situ-
ations. Section 5 gives the conclusions.
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2 Basic MHD equations in cylindrical
coordinates

We consider the equations of incompressible MHD includ-
ing the Hall effect [3]:

j

σ
= E +

1
c

ω × B − mj

ρqc
j × B −∇

(
mi

ρq
pe

)
(2.1)

∂ω

∂t
+ (ω · ∇)ω = −1

ρ
∇p +

1
c
j × B + ν∇2ω, (2.2)

where E, B, ω, j, p, pe, ρ, ν, σ, mi, q and t stands as
usual for the electric field, magnetic field, plasma velocity,
electric current,plasma pressure, electron pressure, mass
density, kinematic viscosity, electrical conductivity, mass
of plasma ions, charge of plasma ions and time respec-
tively, for details: see reference [3].

3 Determination of the potential symmetries

Consider a partial differential equation (PDE), of order m
written in a conserved form: ([4] and references therein)

n∑
i=1

∂

∂xi
Fi [x, u, u1, u2, ..., um−1] = 0 (3.1)

with n ≥ 2 independent variables x = (x1, x2, ..., xn) and
a single dependent variable u. For simplicity, we consider
a single PDE — the generalization to a system of PDEs
in a conserved form is straight-forward. The indices of u
indicate the order of the derivative. If a given PDE is not
written in a conserved form, there are a number of ways of
attempting to put it in a conserved form. These include a
change of variables (dependent as well as independent), an
application of Noether’s theorem [5], direct construction
of conservation laws from field equations [6], and some
combinations of them. Since equation (3.1) is in conserved
form, then there is an (n − 1) exterior differential form
equation (3.1) can be written as dF = 0, it follows that,
there is an (n − 2) form Γ : F = dΓ .

Using some simplifications [3] we may put the equation
of the evolution of flow in the MHD system for cylindrical
coordinates (r, θ, z), which is a generalized FPE, in the
following conservative form:

ut −
(

1
r2

uθ +
1
r
λtθu

)
θ

= 0 (3.2)

with λ a function of r and t; By considering a potential
v as an auxiliary unknown function, the following system
can be associated with equation (3.2):

vθ = u, vt =
1
r2

uθ +
1
r
λtθu. (3.3)

It is well known that the homogeneous linear system,
which characterizes the generators, is obtained from [7]

Y (1)(vθ − u)|s = 0, Y (1)

(
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r
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) ∣∣∣
s

= 0

(3.4)

which must hold identically.
Here, Y (1) is the operator:
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; (3.5)

η
(1)
1 = ηt + (ηu − τt)ut − τuu2

t − ξtuθ − ξuutuθ

+ ηvvt − τvutvt − ξvuθvt,

η
(1)
2 = ηθ + (ηu − ξθ)uθ − τθut − τuuθut − ξuu2

θ

+ ηvvθ − τvutvθ − ξvuθvθ,

φ
(1)
1 = φt + (φv − τt)vt − τvv2

t + φuut − τuutvt

− ξtvθ − ξuutvθ − ξvvtvθ,

φ
(1)
2 = φθ + (φv − ξθ)vθ − ξvv2

θ + φuuθ − τθvt

− τuuθvt − τvvθvt − ξuuθvθ.

where ξ, τ , η and φ are generators of the point symmetry
group of corresponding auxillary system of the FPE.

The first equation of (3.4) becomes

φ
(1)
2 − η = 0 (3.6)

and from equation (3.5) we can rewrite equation (3.6) as

φθ + (φv − ξθ)vθ − ξvv2
θ + φuuθ − τθvt − τuuθvt

− τvvθvt − ξuuθvθ − η = 0, (3.7)

The second equation of (3.4) becomes

φ
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1 − 1
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η
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2 − 1

r
θλttuτ − 1

r
λtξu − 1

r
λtθη = 0 (3.8)

and from equation (3.5) we can rewrite equation (3.8) as

φt + (φv − τt)vt − τvv2
t + φuut − τuutvt − ξtvθ − ξuutvθ

− ξvvtvθ − 1
r
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[
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r
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(3.9)

On substituting vθ by u, and vt by 1
r2 uθ + 1

r λtθu in equa-
tions (3.7) and (3.9), we get:

τ = τ(t), ξ = ξ(θ, t), φu = 0 (3.10)

φθ − η + (φv − ξθ)u = 0 (3.11)

φv − ηu − τt + ξθ = 0 (3.12)
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r
λtθη +
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1
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]
u = 0; (3.13)
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with

η = f(θ, t)u + g(θ, t)v, φ = k(θ, t)v, (3.14)

where f, g and k are arbitrary smooth functions of θ and t.
On solving the above system of equations (3.10)−(3.14),
we get:

τ = τ(t), ξ = ξ(θ, t), (3.15)

kθ − g = 0, (3.16)

K − f − ξθ = 0, (3.17)

2ξθ − τt = 0 (3.18)
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r
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1
r
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1
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1
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1
r
θλtξθ +

1
r
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gt =
(

1
r2
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1
r
λtθg

)
θ

. (3.21)

In solving the above system of equations (3.15)−(3.21), we
confine our attention to physically interesting situations.

4 Invariant solutions

From now on, we will denote by c0 − c13 real arbitrary
constants.
Let λ = 1

2r
In this case, the infinitesimal symmetries are given by:

τ = −2r2c4e
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ξ = c4e
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2r2 − 2
√

2rc0e
t
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2rc0e
t
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)
v
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. (4.1)

Then, we obtain point symmetries with the following gen-
erators:

Y1 : τ = 0, ξ = −2
√

2re
t

2r2 , η =
√

2re
t

2r2 θu +
√

2re
t

2r2 v,

φ =
√

2re
t

2r2 θv,

Y2 : τ = ξ = 0, η = u, φ = v,

Y3 : τ = ξ = φ = 0, η = −u,

Y4 : τ = η = φ = 0, ξ = e−
t

r2

Y5 : τ = −2r2e−
t

r2 , ξ = e−
t

r2 θ, η = φ = 0,

Y6 : τ = 1, η = φ = ξ = 0

and ∞-dimensional symmetry, which is a consequence of
the linearity [8]. It is clear that, Y1 is only a potential
symmetry for equation (3.2).
For the potential symmetry Y1, the characteristic system
related to the invariant surface conditions reads:

v = c7e
−θ2
4 , t = c6 (4.2)

u =
(
c8 − c7

2
θ
)

e
−θ2
4 . (4.3)

If we assume t = c6 = z as a parameter, c7 = h2(z), and
c8 = h1(z) in equations (4.2) and (4.3), we obtain:

u =
(

h1(z) − h2(z)
2

θ

)
e

−θ2
4 , (4.4a)

v = h2(z)e
−θ2
4 ; z = t. (4.4b)

Now, to find the solutions F ∗
E , we introduce equa-

tions (4.4a) in (3.2) obtaining:

h
′
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′
2

2
+
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4r2

)
= 0 (4.5)

which must hold for any value of θ.
From equation (4.5), we have the system as:

h
′
1 = 0,

h
′
2

2
+
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4r2
= 0

⎫⎪⎬
⎪⎭ (4.6)

which on solving, yields

h1(z) = c9,

h2(z) = c10e
− t

2r2

}
. (4.7)

Then, the family F ∗
E is therefore:

u =
(
c9 − c10

2
θe−

t
2r2

)
e−

θ2
4 . (4.8)

Also, equation (4.4a) is a family of solutions of the first-
order equation:
To find the solutions FE , we introduce equations (4.4)
in (3.3) obtaining the system as:

h1 = 0,

h
′
2 +

h2

2r2
= 0

⎫⎬
⎭ (4.9)

which on solving, yields

h1(z) = 0,

h2(z) = c11e
− t

2r2

}
. (4.10)

Then, the family FE is therefore:

u = −c11

2
θe−

1
4r2 (θ2r2+2t) (see Fig. (2)). (4.11)

It is clear that, FE is enclosed in F ∗
E , which are new solu-

tions as far as we know.

Particular case.
If, f = λtθ, g = vz = 0, and u = Θθ in equa-
tions (3.12)−(3.15) we obtain that

f1(t) = 0, (4.12)
u = u(t) (4.13)

ut =
1
r
λtu, (4.14)

λtt +
2
r
λ2 − 1

r2
λ = 0 υm = 1. (4.15)
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Fig. 1. (a) The magnetic field in the surface with µ1 = 10, µ2 = 0.1 and m = 0.001. (b) The magnetic field in the surface with
µ1 = −10, µ2 = 0.1 and m = 0.001. (c) The magnetic field in the surface with µ1 = 10, µ2 = 0 and m = 0.01.
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Fig. 2. (a) The solution for a Fokker-Planck in the surface with c11 = −30, t = 0. (b) The solution for a Fokker-Planck in the
surface with c11 = −30, t = 1. (c) The solution for a Fokker-Planck in the surface with c11 = 30, t = 1.
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Fig. 3. (a) The solution for a Fokker-Planck in the surface with (particular case) c13 = 5, t = 0, c12 = 1. (b) The solution for a
Fokker-Planck in the surface with (particular case) c13 = 5, t = 1, c12 = 1. (c) The solution for a Fokker-Planck in the surface
with (particular case) c13 = 5, t = 2, c12 = −10.

Solving equation (4.15), yields

λt =
1

2r + c12e
− t

r2
. (4.16)

Then, the family F ∗
E is given by:

u = c13

√
2re

t
r2 + c12 (see Fig. (3)). (4.17)

It is clear that, FE is enclosed in F ∗
E , which are new so-

lutions as far as we know. In Figure 3, as in Figure 1,
the solution becomes infinite on the axis of the cylinder.
This may be avoided by considering a hollow conducting
fluid cylinder. In some cases this may involve constraints
due to boundary conditions, especially if the cylinder does
not extend radially to infinity: then only sets of possible
internal and external radii of the hollow cylinder will be
allowed and not arbitrary ones.
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5 Conclusion

In this paper, we made an analysis for the FPE with con-
vection given by the plasma flow with finite electrical con-
ductivity and Hall current. This method based on poten-
tial symmetries turns out to be an alternative, systematic
and powerful technique for the determination of the so-
lutions of linear or nonlinear PDEs, single or a system.
The infinitesimals, similarity variables, dependent vari-
ables, and reduction to quadrature or exact solutions of
the mentioned FPE (in cylindrical coordinates) for phys-
ically realizable forms of λ, u and the magnetic field in-
duction h are also obtained.

The similarity solutions given here do not seem to have
been reported in the literature. Some of these solutions
are unbounded. However, one can deal with them as vari-
ous methods have been elaborated to analyze the proper-
ties of unbounded (particularly explosive type) solutions
of the Cauchy problem of quasilinear parabolic equations
of type (3.2).

We thank the referee for his comments.
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